

The 33rd International Congress and Exposition on Noise Control Engineering

A New Method for the Acoustic Analysis of Complex Mechanical Services Systems Requiring Low Noise Levels

Tim M Marks¹ Marshall Day Acoustics, Collingwood, Australia

Abstract [26]. The new 2,000 seat Concert Hall and 1,800 seat Lyric Theatre at Theatres on the Bay in Singapore were designed to achieve very low noise levels to meet the requirements of the project acoustic consultant, Artec Consultants, who specified an extremely stringent mechanical services noise criteria of N-1 for each auditorium. N-1 is about 12dB below NR15.

Apart from external noise intrusion, the other major noise design consideration was the mechanical services system. A complex system involving 54 air handling units (AHU) supplied each space via numerous supply and return air apertures to achieve satisfactory conditions in a particularly hot and humid climate.

A major source of potential noise was regenerated noise at fittings, branches, dampers, elbows and outlets. Each AHU system had to be analysed to evaluate the individual noise contribution. As each system was very complex, a new method of ductwork acoustic analysis was developed. This paper presents details of a new procedure that provides a rapid and sophisticated analysis of complicated mechanical services systems for low-noise environments.

¹timmarks@marshallday.com

1. INTRODUCTION

The recently opened Esplanade -Theatres on the Bay Concert Hall and Lyric Theatre in Singapore has had the primary mechanical services systems noise analyzed by a new software program that undertakes a complete acoustical analysis of a duct work system including the calculation of self generated noise thereby greatly simplifying the downduct noise analysis. This program predicts regenerated noise by key duct elements within the system and provides comprehensive results in a simple-to-evaluate format. A review of the program output enables rapid and systematic identification of elements that may cause ductborne noise problems allowing modifications to be made to the mechanical services design.

2. BACKGROUND

The Concert Hall and Lyric Theatre were required to achieve very low noise levels to meet the requirements of Artec Consultants, who specified a design criteria of N-1 for each auditorium.

Marshall Day Acoustics' role, acting on behalf of the builder and the mechanical services contractor, was to review the detail designs prepared by the contractor. Marshall Day Acoustics (MDA) undertook to review and analyse every AHU system, to demonstrate compliance with the design criterion N-1.

The Artec acoustical guidelines were used in the design of the ductwork systems, but detailed analysis and reports were also required. Given the complexity of the project and its size, complicated by an evolving design, a computer based analysis was considered the only effective solution, and it was soon apparent that only one software package was suitable for the purpose.

3. THE ACADS SOFTWARE

ACADS-BSG, an engineering software house in Melbourne, Australia, had developed a Fortran based program over many years for downduct acoustic analysis. Other alternative software packages and methods were considered, but the ACADS software was selected after review and a sample calculation assessment. Uniquely among most acoustic analysis software, the ACADS system also provides calculation of induct regenerated ('self'') noise.

The review indicated the software had the necessary potential however, as part of the assessment process it was necessary to validate the regenerated noise predictions. The results of this validation are presented elsewhere at Inter Noise 2004.

A problem encountered with the initial ACADS software was that it could not "trace" the sound through the duct system and the analysis and results display was inflexible. In addition the presentation did not lend itself to analysis or easy comprehension by the client, see Figure 1.

4. TRANSFERRING 3D DRAWINGS TO COMPUTER FILES

The AutoMULE software package was used to import the contractors' 3D AutoCAD drawings. Using commands on the Windows toolbar, it was possible to trace the centre line of the duct work and digitize all supply and return air networks. It was necessary to break each portion of a network into segments and each segment could be assigned local or global parameters. The program effectively generated the (x, y, z) co-ordinates at the start and end of each segment. Within a given segment, fittings such as bends and branch take-offs are included.

After tracing the ductwork in AutoMULE, it is necessary to place fittings on the duct system. Refer to Figure 2a and 2b for the choices of the branch take-off and bend fittings. Similar displays, with appropriate engineering and acoustic parameters, are available for all other fittings encountered in mechanical system design.

After placing the fittings, duct type, dimensions, minimum thicknesses and other engineering parameters including acoustic lining, could then be assigned. Each supply or return air system could be saved and stored within the project directory; enabling various design scenarios to be saved or updated, with the appropriate analysis outputs saved in a folder with the AutoMULE drawing. The AutoMULE design tools made it simple to change parameters such as dimensions, bend or fitting type and acoustic lining type, etc.

5. TYPICAL SYSTEMS

For the Theatres on the Bay project some air handling units serviced over 6 levels with more than 200 segments in each of the supply and return air networks. These larger networks were often stored separately, however on smaller systems the supply and return networks could be incorporated in the same file. Segment colour coding was used to differentiate supply and return networks.

Figure 3 shows a typical schematic of a drawing read by AutoMULE. It is straightforward to manipulate. By right clicking the mouse over any segment, the appropriate engineering parameters are identified in a pop-up window and changed if necessary.

6. ANALYSIS USING THE COGEN TOOL

After running the ACADS Fortran analysis program, the text file results (*.out files) are saved and then imported into a customized Excel file, COGEN. COGEN incorporates numerous macros which sort and arrange the results. The display windows include details on all supply and return ducts, fittings and terminals.

The COGEN file presents the results in a user and printer friendly format as shown in Figure 5. The trace section is used to output the results for a given network ie. one identified as having a high noise level. The results display the sound power at each terminal based on 3 parameters, the sound power (at the terminal) due to the fan, the total sound power at the outlet excluding the terminal noise and the sound power generated by the terminal itself. After viewing the summary results, a trace can be conducted to any terminal to identify any excesses within that network.

Figures 4 and 5 show the results from a typical analysis. Figure 4 shows the summary output for a number of terminals. The sound level excluding the terminal at a given outlet is also presented. Figure 5 shows the detailed analysis for terminal 18. The analysis is conducted across all frequency bands and presented so that the progressive analysis is easily traced and understood.

In summary, the user can trace system noise from the fan to any outlet and present the results in a sequential order. Noise generated at fittings, plus any duct attenuation is calculated at the end of each segment allowing a running total to be accumulated and followed. This is a very useful tool for noise source identification. By tracing through the analysis, the point at which excess noise is generated can be observed (refer Figure 5).

The duct velocity and pressure drop across any segment (which might include fittings) is also presented. A noisy section or fitting can then be revised or modified to reduce noise levels. This is then confirmed by repeating the analysis; with a typical run time of 40-60s.

The program calculates in both directions, so noise generated at a supply (or return) terminal is propagated upstream and added to the sum in each segment. The detailed output gives the direct and reverberant sound pressure individually, as well as the total sound level. In this way key external parameters such as distance, number of terminals per AHU system and room characteristics (volume/room/absorption) can be entered as global parameters and used in all analyses.

7. VALIDATION

A recent film studio project in Melbourne was used to validate the prediction technique. When noise measurements were conducted prior to the opening of the Theatres on the Bay, the results were affected by light fitting and terminal noise. Given that the design targets were so low, it was difficult to identify the noise contribution from mechanical services systems. However, ambient measurements conducted in 5 sound stages with the mechanical services systems operating were found to be significantly below the required level of NR25 at 50% flow ("film" mode). With supply air operating individually the results of the analysis (in NR) are presented in Table 1.

Summary	Summary of studio measurements										
Flow	50%	50%	100%	100%							
Studio 1	NR 15	NR 11	NR 30	NR 24							
Studio 2	NR 15	NR 18	NR 29	NR 27							
Studio 3	NR 15	NR 14	NR 27	NR 28							
Studio 4	NR 18	NR 17	NR 30	NR 27							
Studio 5	NR 19*	NR 15	NR 27*	NR 18							
	measured	predicted	measured	predicted							

 Table 1

 Summary of studio measurements

*Note: affected by external noises

This analysis indicates good agreement between the predicted and measured noise levels, given the system complexity, the variability of the parameters and the need for cost-effective analysis.

8. SUMMARY

The complexity of AHU networks and the superior method of analysis along with the output results, enables induct noise problems to be rapidly identified and rectified at the design stage. Given the time lines involved in complex Performing Art Centre projects and the need to keep track of ever changing designs, this system has proven itself to be effective and powerful in analysing and confirming mechanical services noise levels in critical environments.

9. ACKNOWLEDGEMENTS

Thanks are given to Peter Holmes who developed the COGEN program and to Murray Mason of ACADS-BSG, to Desmond Hill of Penta Ocean Construction Co, Ltd and Charles Grundy of MAE Engineering Ltd.

Figure 1: Fortran Output

						DET.										
DUCT SEG. NO.	63 H2	125 HZ	250 H2	500 HZ	N CDE 1000 HZ	/METR 2000 HZ 5.2	4000	FTG, F-STRM PRESSURE-LOSS-GPA) NO. LOSS FREE DMPER COEF, STREAM TOTAL TO BAL 331 .08 1. 1. In Line Fitting, No attenuation	SPEC. TYPE	53 HZ	125 HZ	250 H2		URE 1	EVEL.	9 4000 HZ
2	1.4	2.0	5.4	16.0	12.1	5.2	2.3	Attenuation from Table 12-40A	GEN ATT ACC	0 76	0 70	0 6 44	15	120	17 24	19 40
3	1.4	2.0	5.4	16.0	12.1	5.2	2.3	Attenuation from Table 12-40A	GEN ATT ACC	71	0 3 61	10	100	200	200	0 18 16
4	1,4	2.5	6.4	19.1	20.3	8.6	3,8	Attenuation from Table 12-40A	GEN ATT ACC	0 1 64	0 49	9 1	18	220	190	160
5	1.4	2,5	6.4	19.1	20.3	8.6	3.8	Attenuation from Table 12-40A	GEN ATT ACC	1 58	37	000	18	210	180	15
6	1.4	1,7	4.8	14.1	8,2	3.5	1,6	4 .03 Attenuation from Table 12-40D	ATT	9 54	2 8 8	109	280	120	883	0
								324 .08 1. 1. In Line Fitting, No attenuation	GEN ATT ACC	22 55	22 0 41	20 24	12 12	404	8	0
7	1.4	1.7	4,8	14,1	8.2	3.5	1.6	401 .02 0. 0. Straight Thru path, No atten.	GEN ATT ACC	60 0 61	56 56	52 52	47 47	41 0 41	35	35 35
8	1.4	1.7	4.8	14.1	8.2	3.5	1.6	409 .03 0. 0. Straight Thru path, No atten.	GEN ATT ACC	32 56	28 0 50	22 37	16 16	12	15 0 24	18 0 30
9	1.4	1.7	4,8	14.1	8,2	0.5	1.6	421 .01 0. 0. Straight Thru path, No atten.	GEN ATT ACC	58 59	54 55	50 50	46 46	40 40	34 0 34	31 0 33
16	1.3	2.6	6.7	19.9	26.2	11.2	4.8	307 .02 0. 0. 0. In Line Fitting, No attenuation	GEN ATT ACC	0 54	49	0 34	8	0 12	22	27
1.5	1.9	5.9	16.0	47.5	65.8	65.8	32.3	421 .90 12. 12. Attenuation from Table 12-400	GEN ATT ACC	48	44 7 45	40	36	30 78 30	24 78 24	21 39 21

Figure 3: AutoMULE schematic file

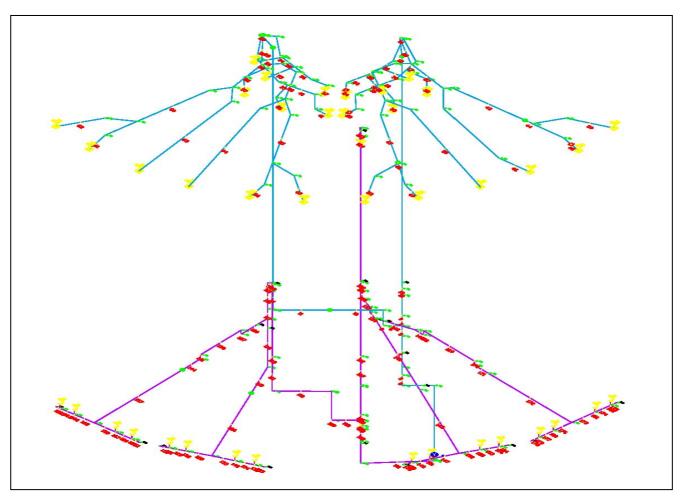
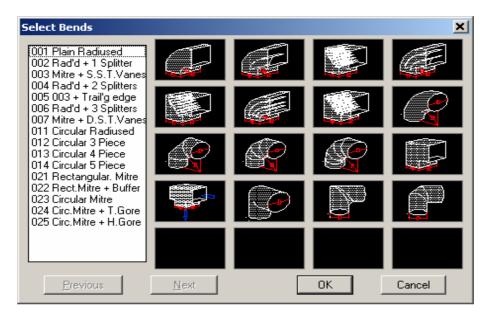



Figure 2a: ACADS Bend Selection Tables

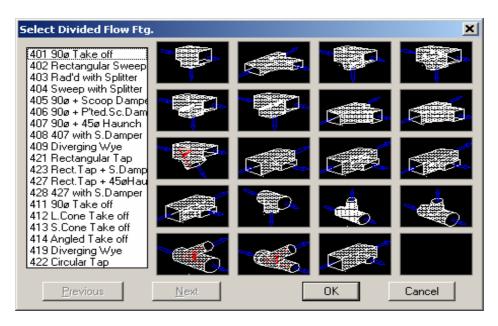


Figure 2b: ACADS Divided Flow Selection Tables

Figure 4: Terminal summary Page Sample

Identifying	segment	terminal	terminal	air quant	neck velocity	total	Damper	
Code	no.	no.	type	l/s	NR level	m/s	PD Pa	OBP Pa
STERM	16		REG	475	34	1.5	32	12
STERM	17		REG	139	17	1.5	15	5
STERM	12		REG	139	29	1.5	33	23
STERM	18		REG	139	14	1.5	10	0
STERM	14		REG	139	14	1.5	11	1
Identifying	segment	Lw due to term	inal					
Code	no.	63	125	250	500	1000	2000	4000
STERM	16	36	39	41	41	33	25	17
STERM	17	26	28	30	25	17	10	2
STERM	12	31	34	36	36	28	20	12
STERM	18	23	25	27	20	12	4	0
STERM	14	23	25	27	20	12	4	0
Identifying	segment	Lw due to fan						
Code	no.	63	125	250	500	1000	2000	4000
STERM	16	21	0	0	0	0	0	0
STERM	17	18	0	0	0	0	0	0
STERM	12	25	4	0	0	0	0	0
STERM	18	27	0	0	0	0	0	0
STERM	14	25	0	0	0	0	0	0
Identifying	segment	Lw without terr	ninal					
Code	no.	63	125	250	500	1000	2000	4000
STERM	16	40	31	0	0	0	0	0
STERM	17	35	21	3	2	2	0	0
STERM	12	39	36	20	0	0	2	12
STERM	18	36	26	5	0	0	0	0
STERM	14	35	30	12	0	0	0	10

Job: Title:		es on the	Bay, Sir	ngapore			Date: nitials I	PRH					N	IA	ACOUSTIC	
lob No: Filename:	0016 ahuchp	ll.amx				C	Cogen: \	/1.9.8					Detailed analysis - Supply terminal 18			
Identifying Code	Segmen Number	l Length r	63	125	Soun 250	d Powe 500	r Level 1000	dB 2000	4000	8000	Туре	PD (Pa)	Vel m/s	Quant I/s	Fitting Type	
FAN			86	86	90	88	84	80	76	76		106		1031		
SFITT	1		0	0	0	0	0	0	0	0	GEN	1			331- Plane symmetric diffuser at fan	
		_	0	0	0	0	0	0	0	0	ATT					
		_	86	86	90	88	84	80	76	76	ACC					
SDUCT	1	7.5	0	0	0	0	0	0	0	0	ATT	4	4.3	1031	600x400mm duct	
SFITT	2		0	0	0	0	0	0	0	0	GEN	2			1- Rectangular radius bend	
		-	0	1	6	15	17	17	19	19	ATT					
SDUCT	2	2.8	76 0	70 0	44 0	0	0	24 0	40 0	40	ACC ATT	3	4.3	1021	600x400mm duct	
SFITT	2	2.0	0	0	0	0	0	0	0	0	GEN	2	4.5	1051	1- Rectangular radius bend	
5111	J		1	3	10	19	20	20	18	18	ATT	2				
		-	71	61	19	0	0	0	16	16	ACC					
SDUCT	3	4.4	0	0	0	0	0	0	0	0	ATT	4	4.3	1031	600x400mm duct	
SFITT	4		0	0	0	0	0	0	0	0	GEN	3			1- Rectangular radius bend	
			1	3	9	19	22	19	16	16	ATT				5	
		_	64	49	1	0	0	0	0	0	ACC					
SDUCT	4	3.9	0	0	0	0	0	0	0	0	ATT	6	5.7	1031	600x300mm duct	
SFITT	5		1	0	0	0	0	0	0	0	GEN	3			1- Rectangular radius bend	
			1	3	9	19	21	18	15	15	ATT					
		_	58	37	9	0	0	0	0	0	ACC					
SDUCT	5	0.7	0	0	0	0	0	0	0	0	ATT	3	5.7	1031	600x300mm duct	
SFITT	6		0	0	0	0	0	0	0	0	GEN	0			4- Rect radius - two splitters	
		-	3	3	10	28	17	8	4	4	ATT					
05777	~		54	36	9	0	0	3	5	5	ACC					
SFITT	6		22	22	20	12	4	0	0	0	GEN	1			324- Single blade fire damper	
			0 55	0 41	0 24	0 12	0 4	0 3	0 7	0 7	ATT ACC					
SDUCT	6	3.2	0	0	0	0	0	0	0	0	ACC	1	3.4	1031	600x500mm duct	
SFITT	10	5.2	53	49	45	40	34	28	28	28	GEN	22	5.1	1051	401- Rect 90° take-off	
51111	10		0	2	6	16	22	20	15	15	ATT	22				
		-	58	51	45	40	34	28	28	28	ACC					
SDUCT	10	0.3	0	0	0	0	0	0	0	0	ATT	23	4.6	278	400x150mm duct	
SFITT	11		21	14	8	5	8	11	14	14	GEN	0			401- Rect 90° take-off	
		_	0	0	0	0	0	0	0	0	ATT					
			50	44	38	26	16	16	21	21	ACC					
SDUCT	11	0.5	0	0	0	0	0	0	0	0	ATT	1	2.3	139	400x150mm duct	
SFITT	13		0	0	0	0	0	0	0	0	GEN	0			1- Rectangular radius bend	
		_	0	2	4	12	17	13	8	8	ATT					
001107		<u> </u>	49	40	28	0	0	0	5	5	ACC		~ ~		100.150	
SDUCT	13	0.4	0	0	0	0	0	0	0	0	ATT	1	2.3	139	400x150mm duct	
SFITT	18		0 0	0 2	0 5	0 14	0 19	0 16	0 10	0 10	GEN ATT	0			1- Rectangular radius bend	
		-	49	36	5 19	0	0	0	0	0	ACC					
SDUCT	18	1.0	49	<u> </u>	19	0	0	0	0	0	ACC	11	2.3	130	400x150mm duct	
STERM	18	2.0	23	25	27	20	12	4	0	0		10	1.5		Sound power from terminal	
			27	0	0	0	0	0	0	0					Sound power from fan	
			36	26	5	0	0	0	0	0					Sound power excluding terminal	
		-	36	29	27	20	12	4	0	0					Total sound power from terminal	
		-											1031	- Total	air quantity	
istance to lister	her		-11	-11	-11	-11	-11	-11	-11	-11			139	- Termi	nal air quantity	
Directivity		3	4	5	6	7	8	8	0			57	- Total	pressure drop		
irect sound pre	ssure leve	el _	28	22	21	15	8	1	-3	-11			106	- Total	fan pressure	
		·											0.093	- Termi	nal area	
oom correction			-28	-28	-28	-28	-28	-28	-28	-28			1	- Distar	nce to listener	
umber of termi	nals - 5	_	7	7	7	7	7	7	7	7			М	- Direct	ivity	
everberant sou	nd pressu	ire level	15	8	6	-1	-9	-17	-21	-21					er of terminals	
oise criteria		_	36	22	13	8	5	3	3	3			2415	- Room	constant	
atal cound proc	sure leve	1	28	22	21	15	8	1	-3	-11			N-1	- Noise	criteria	

Figure 5: COGEN Output Summary